
 1 

  
Abstract—Whole genome comparison consists of comparing or 

aligning two genome sequences in the hope that analogous 
functional or physical characteristics may be observed. Sequence 
comparison is done via a number of slow rigorous algorithms, or 
faster heuristic approaches. However, due to the large size of 
genomic sequences, the capacity of current software is limited. 

In this work, we design a parallel-distributed system for the 
Smith-Waterman dynamic programming sequence comparison 
algorithm. We use subword parallelism to speedup sequence to 
sequence comparison using Streaming SIMD Extensions (SSE) 
on Intel Pentium processors. We compare two approaches, one 
requiring explicit data dependency handling and the other built 
to automatically handle dependencies. We achieve a speedup of 
10 - 30 and establish the optimum conditions for each approach. 
We then implement a scalable and fault-tolerant distributed 
version of the genome comparison process on a network of 
workstations based on a static work allocation algorithm. We 
achieve speeds upwards of 8000 MCUPS on 64 workstations, one 
of the fastest implementations of the Smith-Waterman algorithm. 
 

Index Terms—Sequence comparison, Dynamic programming, 
Subword parallelism, MMX. 
 

I. INTRODUCTION 

DENINE, Guanine, Cytosine, and Thymine make up the 
genetic code of every living organism. The genetic make-

up of a large number of organisms is being sequenced, 
exponentially increasing the amount of available data. 
Computers play an important role in managing and analyzing 
this data, including database searching, sequence alignment 
and structure prediction. 

Sequence similarity searches is one of the most performed 
tasks in Computational Biology. Similarity searches identify 
closely related sequences from a database, on the assumption 
that a high degree of similarity often implies similar function 
or structure. When looking for similar sequences in a 
database, an alignment score is calculated for every sequence 
in the database, which represents its similarity with the query 
sequence. Rigorous algorithms to calculate the optimal 

 
 

alignment score based on the dynamic programming technique 
are sensitive, but extremely slow on workstations. Hence, 
faster heuristic alternatives are widely used but have the 
disadvantage of not being able to detect distantly related 
sequences. The Smith-Waterman dynamic programming 
method is used to calculate the optimum local alignment score 
between a pair of sequences. Due to its compute-intensive 
nature, they are rarely used for large scale database searches. 

Whole genome comparison is the next step toward 
understanding organisms. By definition, it is the comparison 
or alignment of two genomic sequences. It is extremely useful 
for tasks such as deducing the history of evolution of 
organisms, or determining coding and functional noncoding 
regions. However, current software is unable to perform this 
extraordinary task because of the immense computational and 
space requirements. 

In this paper we describe a parallel-distributed 
implementation of the dynamic programming technique, 
exploiting the inherent fine-grained and coarse-grained 
parallelism. We use Intel’s MMX/SSE2 a form of subword 
parallelism, to speedup the algorithm on a single processor, 
and design a distributed system to distribute the search process 
on a network of workstations. 

  

II. RELATED WORK 

Parallelization of the Smith-Waterman database search 
algorithm proceeds on two fronts: fine-grained and coarse-
grained parallelism. In the fine-grained approach the pairwise 
comparison algorithm is parallelized, where each processing 
element performs a part of the matrix calculation to help 
determine the optimal score. This is most widely used in 
single instruction stream, multiple data stream computers 
where each processor executes the same instruction 
simultaneously with little communication overhead between 
the processors. For example each processing element may be 
assigned a single character of the query sequence, while the 
database is shifted linearly through the processing elements, to 
perform the comparison in O(M + N) time. In multiple 
instruction stream, multiple data stream computers, the coarse-

1Department of Computer Science and Engineering 
Vellore Institute of Technology 

Vellore, TN 632014 INDIA 
arpith@arpith.com 

 

Whole Genome Comparison using Commodity 
Workstations 

Arpith C. Jacob1, Sugata Sanyal2 

A 

2School of Technology and Computer Science 
Tata Institute of Fundamental Research 

Mumbai, 400005 INDIA  



 2 

grained approach is used where subsets of the database is 
independently searched on the processing elements. Each 
processing element is assigned an equal portion of the 
database and uses the query sequence to evaluate the optimal 
scores. The success of the coarse-grained approach depends 
on the load balancing strategy used. 

Five architectures used for sequence comparison are 
described in Hughey [1]: special purpose VLSI, 
reconfigurable hardware, programmable co-processors, 
supercomputers and workstations. 

Special purpose VLSI provides the best performance but is 
limited to a single algorithm. The Biological Information 
Signal Processing system (BISP) was one of the first systolic 
array processors for high speed sequence comparison. Others 
include SAMBA and Fast Data Finder (FDF). 

Reconfigurable hardware are based on field programmable 
gate arrays (FPGAs) or similar designs. They are more 
versatile than special purpose VLSI and can be adapted for 
different algorithms, however such reconfiguration is a 
laborious task. Examples include Splash, DeCypher and 
Bioccelerator based on FPGAs, and MGAP based on its own 
architecture.  

Programmable co-processors strive to balance the 
flexibility of reconfigurable hardware with the speed and high 
processing element density of special purpose VLSI. PIM is a 
programmable co-processor with 64 1-bit PEs in a chip. 
Kestrel is a 512 element array of 8-bit PEs capable of 
performing a wide variety of tasks including sequence 
alignment using the Smith-Waterman algorithm. 

Supercomputers can be effectively used for sequence 
analysis. The MasPar MP-2 is a single instruction stream, 
multiple data stream computer that executes the same 
instruction simultaneously on all its processing elements. 
BLAZE, an implementation of the Smith-Waterman 
algorithm, was written for the MasPar MP1104 supercomputer 
containing 4096 processors. Alpern, Carter & Gatlin [2] 
suggested the use of microparallelism on the Intel Paragon 
i860 to pack four numbers in a single 64-bit Z-buffer register. 

Workstations are inexpensive and widely available, but can 
be very slow. Uniprocessor integer implementations on Sun 
UltraSparc and DEC Alpha workstations give modest speeds. 
Wozniak [3] presented an implementation that used the SIMD 
visual instruction set of Sun UltraSparc microprocessors to 
simultaneously calculate four rows of the dynamic 
programming matrix. Rognes and Seeberg [4] used SIMD 
multimedia extension instructions on Intel Pentium 
microprocessors to produce one of the fastest implementations 
on workstations. Networks of workstations have also been 
used effectively to distribute the database search process on a 
number of workstations. Strumpen [5] used a massively 
parallel approach to distribute the database search process in a 
heterogeneous environment on more than 800 workstations in 
the internet. Martins & Cuvillo [6] presented an event-driven 
multithreaded implementation of the sequence alignment 
algorithm for the EARTH architecture, on a Beowulf cluster 
of 128 Pentium Pro microprocessors. 

With the advent of cheap and powerful workstations with 

parallel processing capabilities, it has become possible to 
realize substantial speed improvements for the sequence 
comparison algorithm. In this work, two fine-grained 
approaches using the Intel Pentium 4 microprocessor’s 
MMX/SSE2 technology are reviewed. A coarse-grained 
distributed system integrating the fine-grained technique is 
built which achieves speeds comparable with the best 
implementations of the Smith-Waterman algorithm on special 
purpose hardware.  

  

III. THE SMITH-WATERMAN ALGORITHM 

Needleman & Wunsch [7] and Sellers [8] introduced the 
global alignment algorithm based on the dynamic 
programming approach, which was the first step in sequence 
comparison algorithms. Smith & Waterman [9] introduced an 
O(M2N) algorithm to identify common molecular 
subsequences, which was able to take into account 
evolutionary insertions and deletions. Gotoh [10] modified 
this algorithm to run in O(MN) time by considering affine gap 
penalties. Each of these algorithms depended on saving the 
entire M * N matrix in order to recover the alignment. The 
large space requirement problem was solved by Myers & 
Miller [11] who presented a quadratic time and linear space 
algorithm, based on the divide and conquer approach. Aho, 
Hirschberg and Ullman [12] proved that such comparison 
algorithms, which compare symbols to see if they are equal or 
unequal, have to take time proportional to the product of their 
string lengths. 

Two sequences A and B of length M and N respectively are 
compared using a substitution matrix �, and an affine gap 
weight model. The gap penalty is given by: Wi + kWe where 

 

 Sequence B 

  T C G A C A T A 

 0 0 0 0 0 0 0 0 0 

A 0 0 0 0 5 0 5 0 5 

C 0 0 5 0 0 10 3 1 0 

T 0 5 0 1 0 3 6 8 1 

A 0 0 1 0 6 0 8 2 13 

G 0 0 0 6 0 2 1 4 6 

G 0 0 0 5 2 0 0 0 0 

C 0 0 5 0 1 7 0 0 0 

S
eq

ue
nc

e 
A

 

A 0 0 0 1 5 0 12 5 5 

 
 
Fig. 1.  Comparison Matrix: Optimal score: 13, Match: 5, Mismatch: –4, 
Penalty: 0 + 7k.  
Optimal Alignment: A C A T A 
       A C _  T A 



 3 

Wi > 0 and We > 0. Wi is the penalty for initiating a gap and 
We is the penalty for extension of the gap, which varies 
linearly on the length of the gap. The substitution matrix � 
lists the probabilities of change from one nucleotide or amino 
acid into another in the sequence. There are two widely used 
families of matrices: the Percent Accepted Mutation matrices 
(PAM) and the Block Substitution Matrices (BLOSUM). 

A maximization relation is used in order to calculate the 
optimum local alignment score. The optimal local alignment 
score is calculated using the following recurrence relations: 
 

�
�

�

�
�

�

�

�
�

�

�
�

�

�

∂+

=

�
�
�

�
�
�

=

�
�
�

�
�
�

=

=====

)B ,(A  1) - j 1, - H(i 
j) F(i, 
j) E(i, 

0 

max     j) H(i,

 W-  W- 1) - j H(i, 

 W- 1) - j F(i, 
max     j) F(i,

 W-  W- j) 1, - H(i 

 W- j) 1, - E(i 
max     j) E(i,

0  jor  0  i if0  j) H(i,  j) F(i,  j) E(i,

ji

ei

e

ei

e

 

 
The highest value in the H matrix gives the optimal score. 

One of a possible many optimal alignments can be retrieved 
by retracing the steps taken during the H matrix computation, 
from the optimal score back to a zero term. The recurrence can 
be understood as follows: the E matrix holds the score of an 
alignment that ends with a gap in sequence A. When 
calculating the E(i, j)th value, both extending an existing gap 
by one space, or initiating a completely new gap is considered. 
The F matrix calculations can be explained in a similar 
fashion. The H(i, j)th cell value holds the best score of a local 
alignment that ends at position Ai, Bj. Hence, alignments with 
gaps in either sequence, or the possibility of increasing the 
alignment with a matched or mismatched pair are considered. 
A zero term is added to the recurrence relation in order to 
discard negatively scoring alignments and restart the local 
alignment. 

To quantify the performance of dynamic programming 
algorithms, the performance measure millions of dynamic 
programming cell updates per second or MCUPS is defined. It 
represents the number of cells in the H matrix that can be 
computed per second, and includes all memory operations and 
corresponding E/F matrix cell evaluations. It is calculated as 
(M * N) / tdp / 106 where tdp is the time taken in seconds, to 
evaluate the entire H matrix and return the optimal score. 

 

IV. FINE-GRAINED APPROACH 

General-purpose microprocessors have been evolving to 
include media processing in their domain of workloads. Media 
processing programs have ever increasing demands to handle 
real-time animation, voice and video. Multimedia extensions 
have been added to the Instruction Set Architectures (ISAs) of 
most microprocessors to support such workloads [13]. These 
extensions exploit the concept of subword parallelism where 
the basic unit of computation is split into subwords, with each 
unit capable of performing the same operation simultaneously. 
This is a form of single instruction stream, multiple data 
stream (SIMD) parallel processing ideally suited for 
applications that exhibit a high level of data parallelism. They 
are usually implemented in hardware and cost very little in 
terms of extra hardware requirements. 

General-purpose microprocessors represent a low cost, 
flexible solution compared to pure hardware solutions that are 
significantly costlier, hard to program and are restricted to a 
single algorithm. Perhaps more importantly, general-purpose 
microprocessors are already widely available which makes it 
an even more attractive option to exploit. Implementations of 
the Smith-Waterman algorithm using multimedia extensions 
typically take the fine-grained approach in parallelizing the 
pairwise comparison of two sequences. Wozniak [3] used the 
visual instruction set (VIS) of Sun UltraSparc microprocessors 
to simultaneously calculate four rows of the dynamic 
programming matrix. The implementation achieved speeds of 
18 MCUPS on a single 167Mhz UltraSparc microprocessor, a 
two-fold speedup over the algorithm implemented using 
integer instructions on the same machine. They also 
implemented a coarse-grained version, LASSAP (a LArge 
Scale Sequence compArison Package), on a SUN Enterprise 
6000 server with 12 processors achieving speeds of 200 
MCUPS. Rognes and Seeberg [4] used a different approach to 
the parallelization of the Smith-Waterman algorithm, using 
multimedia extensions (MMX) and achieved speeds of 150 
MCUPS on a single Pentium III 500Mhz microprocessor. This 
represented a six-fold speedup relative to the sequential 
algorithm using integer instructions on the same hardware. 

A. Multimedia Extensions on Intel Microprocessors 
Intel introduced the Pentium MMX microprocessor [14] in 

1997 making cheap SIMD processing available for 
workstation applications. MMX (MultiMedia eXtensions) 
technology aliased the eight 64-bit MMX registers with the 
floating point registers of the x87 FPU. MMX technology 
allows up to eight byte operations to be performed in parallel. 
SIMD processing was enhanced with the addition of SSE2 
(Streaming SIMD Extensions) on the Pentium 4 
microprocessor. SSE2 is capable of handling sixteen 
simultaneous byte operations in its 128-bit XMM registers. 

The basic integer instructions are extended into SIMD 
versions and include arithmetic, shift, comparison, data 
transfer, and conversion instructions. The speedup is achieved 
by allowing the same operation to be performed on multiple 
data elements. Because of the smaller number of bits available 
for each data type, overflows or underflows occur more 



 4 

frequently. They are handled by hardware in the Intel 
architecture by two methods: wraparound arithmetic and 
saturation arithmetic.  

Wraparound arithmetic like integer operations in C, simply 
truncate the most significant bit when an out of range result 
occurs. In effect, the result value is always taken modulo 2n 
where each subword is of n bits. A more attractive solution for 
most applications is saturation arithmetic, where the result 
saturates at an upper or lower bound. When the result of an 
operation overflows the width of any subword, the result is 
limited to the largest representable value. Similarly, if an 
underflow occurs, the result is limited to the smallest 
representable value. Hence, for unsigned integer data types of 
n bits, underflows are clamped to 0, and overflows to 2n – 1. 
Saturation arithmetic is advantageous because it offers a 
simple way to eliminate unneeded negative values or perform 
arithmetic operations automatically limiting results without 
causing errors, and is used in our implementation. 

Compiler support for SIMD instructions is still rudimentary. 
Some compilers such as the Intel C/C++ compiler provide 
intrinsics that support SIMD instructions. The Intel C/C++ 
compiler can also detect and optimize simple loops that 
exhibit parallelism and automatically generate vectorized code 
that use SIMD instructions. Specialized libraries for common 
functions utilizing SIMD operations have also been released 
by various vendors. Most applications however require careful 
parallelization of algorithms, and hand coding using SIMD 
instructions utilizing assembly language. Such code is not 
portable among different microprocessors and has to be 
rewritten for different processor platforms. 

B. Challenges in Parallelizing the Smith-Waterman 
Algorithm 
Parallelizing the dynamic programming algorithm is done 

by calculating multiple rows of the H matrix simultaneously. 
Data dependencies that exist within this parallel computation 
must be handled appropriately. Figure 2 shows the data 
dependencies of each cell in the H matrix. The value in the (i, 
j)th cell depends on (i – 1, j – 1)th, (i – 1, j)th and (i, j – 1)th cell 
values. Hence, before a cell in the matrix can be computed, the 
cells immediately above, to the left and diagonally across must 
be available. 

The alignment matrix H, can be evaluated in parallel rows, 
columns or anti-diagonals. Elements in an anti-diagonal 
depend solely on the previous anti-diagonal in the matrix, 
hence the problem of data dependencies is automatically 
handled. Computation can proceed on parallel wave fronts 
diagonally across the alignment matrix. Proceeding in 
horizontal rows or vertical columns presents a challenge for 
parallel computation since cells in a row or column depend on 
other cells in the same row or column. This method however, 
does have its advantages once the data dependencies are 
appropriately handled. 

C. Diagonal Approach 
When computation proceeds diagonally across the 

alignment matrix the interdependencies are automatically 
handled, and thus is an ideal solution for parallel computation. 

The main disadvantage lies in the fact that the loading of the 
substitution scores for a diagonal cannot be parallelized. The 
substitution scores cannot be accessed linearly from memory, 
but have to be independently loaded for each cell in the 
diagonal. The symbols from the two sequences that 
correspond to a particular cell in the alignment matrix have to 
be read, and a look-up into the substitution table be made in 
order to calculate the corresponding match or mismatch score. 
This procedure has to be repeated for every element in the 
diagonal before parallel computation can proceed. This non-
linear memory access pattern adversely affects the 
performance of the algorithm. 

The second disadvantage is that the size of the diagonal 
varies at the beginning and the end of the matrix sweep. If for 
example computation occurs in parallel for four cells of a 
diagonal of the alignment matrix at a time, the calculation of 
the first and last three diagonals presents a problem. The first 
three diagonals of the alignment matrix with one, two and 
three cells respectively do not present enough cells to load the 
4-way SIMD word. An elegant way to overcome the non-
uniformity of computation is to add three dummy symbols 
both at the beginning and the end of the query sequence. 
Parallel computation of the alignment matrix can then proceed 
uniformly through the length of the query sequence, without 
the need to take care of special cases. Appropriate entries must 
be added in the similarity table between the dummy symbol 
and each symbol in the alphabet, the dummy symbol included, 
with a score of zero so that the optimal score remains 
unchanged. 

Computation proceeds along successive diagonals of length 
equal to the SIMD word through the entire length of the query 
sequence. The next four rows of the matrix are then computed 
in the same manner. This proceeds along the entire length of 
the database sequence in steps equal to the SIMD word length. 
If the database sequence length is not a multiple of the SIMD 
word length, the sequence must be concatenated at the end 
with an appropriate number of dummy symbols. The speedup 

(i – 1, j – 1) (i – 1, j) 

(i, j) 

– Wi – We 

 

�(Ai, Bj) 

– Wi – We 

 
– We – We 

– We 

– We 

– Wi – We 

 

– Wi – We 
H E 

F 

(i, j – 1) 

H E 

F 

H E 

F 

H E 

F 

 
Fig. 2.  Data dependencies in the similarity matrix. 



 5 

achieved over the sequential version is due to the 
simultaneous computation of four rows. The number of loop 
iterations is reduced by a factor of four and along with it, the 
number of memory references and other loop overhead. 

Figure 4.a shows the algorithm for the comparison of a 
query sequence with a database sequence using SIMD 
processing by the diagonal method. Because alignments are 
not computed, the whole matrix need not be stored in memory. 
To calculate the ith row of the H matrix, only the (i – 1)th row 
of the E and H matrix along with the scalars VF (F[i][j - 1]), 
VHC (H[i][j – 1]) and VHD (H[i – 1][j – 1]) are required. 
Each scalar is a SIMD word register capable of holding 
SIMD_WIDTH subwords. Since saturated arithmetic is used 
elements in the H matrix are automatically clamped to zero, 
hence the zero term is not required in the recurrence relation. 

SIMD operations can be performed with signed or unsigned 
integers. Except for certain elements in the substitution matrix, 
all results of computation are strictly greater than or equal to 
zero. Representation of negative numbers requires an extra bit 
and thus reduces the maximum representable integer value by 
half. To overcome this problem, all elements in the similarity 
matrix are biased by a positive value so that no element is 
below zero. The bias can then be subtracted during 
computation without affecting the optimum score. The 
maximum score that can be computed by the algorithm using a 
SIMD word holding integers of n bits is: 2n – 1 – BIAS. Any 
score equal to this value must be recomputed using a higher 
precision algorithm. 

In order to obtain optimum performance, a number of 
techniques have been used to speedup the code. Performance 
reduces drastically if the code and data that is referenced in 
the inner loop of the algorithm is not contained in the first 
level cache of the microprocessor. The two E and H arrays are 
interleaved together as an array of structures as it is faster to 
access memory in sequential order. SIMD words in memory 
are aligned at appropriate boundaries to maximize 
performance. 64-bit memory access with MMX registers 
requires the target address to be aligned at 8 byte boundaries 
and 128-bit memory access with XMM registers requires 
alignment at 16 byte boundaries. Non-aligned memory access 
reduces performance drastically, and in some cases may raise 
exceptions. Calculation of the substitution score vector 
provides a major performance hurdle due to its non-linear 

memory access pattern. Each subword requires one addition, 
one multiplication and two memory reference instructions in 
the outer loop, along with three memory read instructions in 
the inner loop. These instructions are suitably rearranged to 
reduce the effects of memory latency. 

D. Horizontal Approach 
When computation proceeds horizontally along the rows of 

the alignment matrix the interdependencies are not resolved. 
To calculate the value of the (i, j)th cell in the H matrix, the 
values of the (i, j – 1)th cell in the F and H matrices are 
required. This makes it impossible to calculate horizontal cells 
of the H matrix in parallel.  

An interesting empirical observation on the working of the 
Smith-Waterman algorithm for biological sequences (SWAT 
optimization) was made by Phil Green and later implemented 
in the SWAT program. In most cells of the E, F and H 
matrices, the values are less than zero (clamped to zero when 
using saturated arithmetic) and thus do not contribute to H. As 
can be seen from the recurrence below, the (i, j)th cell value in 
the F matrix will remain zero if the (i, j – 1)th cell value is 
already zero, so long as H(i, j – 1) <= Wi + We. 

 

�
�
�

�
�
�

=
ei

e

 W-  W- 1) - j H(i, 

 W- 1) - j F(i, 
max     j) F(i,  

 
If the H value is below this threshold, F will remain zero 

along the row and need not be taken into account for the rest 
of the iteration. The effectiveness of this speed optimization 
depends heavily on the threshold value. If the gap open and 
gap extend penalties are very small, most H values will be 
above the threshold and there will be no speedup in the 
algorithm. 

The SWAT optimization offers a solution to the horizontal 
data dependency problem when calculating the H values in 
parallel. For example, when using a 4-way SIMD word, the F 
values can be ignored from the iteration if the four H values in 
its relation are below the threshold Wi + We. If one or more of 
the H values exceeds this threshold, the F values must be 
recalculated using a sequential process. 

a) 
 
 

 

 
 
 

             Query Sequence 
              
              
              
              
              
              
              D

at
ab

as
e 

Se
qu

en
ce

 

              

b)              Query Sequence 
           
           
           
           
           
           
           D

at
ab

as
e 

Se
qu

en
ce

 

 

 

 

 

 

           
 
Fig. 3.  Fine-grained parallelization of the Smith-Waterman algorithm using 4-way subword processing. a. Diagonal approach. b. Horizontal approach. 



 6 

a) 
 
int sw_simd_diag( char *query, int m, char *dbseq,  
         int n, int **subst_matrix, 
         int gap_init, int gap_ext, 
         int bias ) 
{ 

int i, j; 
int E[m + 2 * SIMD_WIDTH - 2]; 
int H[m + 2 * SIMD_WIDTH - 2]; 
vector_int VE, VHC, VHD, VF, VH, 
     Vsubst_matrix, Vgap_init, 

      Vgap_ext, Vbias, Vscore; 
 
Vgap_init = { gap_init, ..., gap_init }; 
Vgap_ext = { gap_ext, ..., gap_ext }; 
Vbias = { bias, ..., bias }; 
 
for ( i = 0; i < m + 2 * SIMD_WIDTH - 2; i++ ) 
{ 
  E[i] = 0; 
  H[i] = 0; 
} 
 
Vscore = { 0, ..., 0 }; 
for ( i = 0; i < n / SIMD_WIDTH; i++ ) 
{ 
  VF = VHC = VHD = { 0, ..., 0 }; 
  VE = { 0, ..., E[SIMD_WIDTH - 1] }; 
  VH = { 0, ..., H[SIMD_WIDTH - 1] }; 
 
  for ( j = 0; j < m + SIMD_WIDTH - 1; j++ ) 
  { 
    VF = MAX( VF, VHC – Vgap_init ) – Vgap_ext; 
    VE = MAX( VE, VH – Vgap_init ) – Vgap_ext; 
 
    Vsubst_matrix = 
  { subst_matrix[query[j + SIMD_WIDTH - 1]] 
         [dbseq[i * SIMD_WIDTH]], 
   ..., 

    subst_matrix[query[j]] 
          [dbseq[i * SIMD_WIDTH + 
          SIMD_WIDTH - 1]] 
   }; 

     
  VHC = MAX( VE, VF, 
       VHD + Vsubst_matrix - Vbias ); 
  VHD = VH; 
  Vscore = MAX( Vscore, VHC ); 
 
  E[j] = VE >> ( SIMD_WIDTH – 1 ); 
  VE = ( VE << 1 ) | E[j + SIMD_WIDTH]; 
  H[j] = VHC >> ( SIMD_WIDTH – 1 ); 
  VH = ( VHC << 1 ) | H[j + SIMD_WIDTH]; 
 } 
} 
 

 return MAX( Vscore[0], ...,  
       Vscore[SIMD_WIDTH - 1] ); 
} 

b) 
 
int sw_simd_horiz( int **qprof_matrix, int m, 

         char *dbseq, int n, 
        int gap_init, int gap_ext, 
        int bias ) 

{ 
int i, j; 
int E[m], H[m]; 
vector_int X, T, VE, VF, VH, 
      Vgap_init, Vgap_ext, Vbias, Vscore; 
 
Vgap_init = { gap_init, ..., gap_init }; 
Vgap_ext = { gap_ext, ..., gap_ext }; 
Vbias = { bias, ..., bias }; 
 
for ( i = 0; i < m; i++ ) 
{ 
  E[i] = 0; 
  H[i] = 0; 
} 
 
Vscore = { 0, ..., 0 }; 
for ( i = 0; i < n; i++ ) 
{ 
  X = VF = { 0, ..., 0 }; 
 
  for ( j = 0; j < m / SIMD_WIDTH; j++ ) 
 { 
    VH = H[j]; 
    VE = E[j]; 
    VE = MAX( VE, VH – Vgap_init ) – Vgap_ext; 
 
    T = VH >> ( SIMD_WIDTH – 1 ); 
    VH = X | ( VH << 1 ); 
    X = T; 
 
    VH = VH +  
     qprof_matrix[dbseq[i]] 
              [j * SIMD_WIDTH] - Vbias; 
    VH = MAX( VH, VE ); 
 
    VF = ( VH << 1 ) |  
      ( VF >> ( SIMD_WIDTH – 1 ) ); 
    VF = VF – Vgap_init – Vgap_ext; 
 
    if ( VF > 0 ) 
  { 
        T = VF; 
        while ( T > 0 ) 

     { 
          T = ( T << 1 ) – Vgap_ext; 
          VF = MAX( VF, T ); 
        } 
        VF = MAX( VH, VF ); 
        VF = MAX( VH, VF + Vgap_init ); 
     } 
   else 
   { 
        VF = VH; 
     } 
     H[j] = VH; 
     E[j] = VE; 
 
     Vscore = MAX( Vscore, VH ); 
  } 
} 

 
 return MAX( Vscore[0], ..., 
       Vscore[SIMD_WIDTH - 1] ); 
} 

 
 
Fig. 4.  Parallel Smith-Waterman algorithm. a. Diagonal approach. b. Horizontal approach. 
 



 7 

 An advantage with the horizontal method is that the loading 
of the substitution scores is greatly simplified. The 
substitution table is no longer referenced for loading the 
substitution scores for each subword of the SIMD word. 
Instead, the scores can be loaded with a single memory read 
operation using a query sequence profile table. The query 
sequence profile table contains the substitution scores of the 
query sequence placed horizontally across the matrix, versus 
an imaginary sequence made up of all symbols in the alphabet. 
The query sequence profile is created once for the query 
sequence and is used for pairwise comparison with all 
sequences in the database. When loading the horizontal 
substitution scores for the recurrence in the inner loop, the 
query sequence profile table is referenced, indexed by the 
database symbol of the current row and the query sequence 
position of the inner loop iteration. 

Figure 4.b shows the algorithm for the comparison of a 
query sequence with a database sequence using SIMD 
processing by the horizontal method. Much of the 
optimization techniques used in the diagonal method are 
relevant here. The query sequence profile table is computed 
once before the database comparison procedure and is usually 
small enough to fit in the first level cache of the 
microprocessor. The conditional loop presents a problem 
because it is cumbersome to implement using Intel’s media 
processing ISA. Further, it increases the runtime because of 
the possibility of misprediction of the branch target address. 
Thus, the SIMD conditional loop is unrolled. 

E. Results 
The two algorithms were implemented using MMX and 

SSE2 technology and tests were carried out on a Pentium III 
500Mhz with 128MB RAM running Windows 2000, and a 
Pentium 4 1.4Ghz machine with 128MB RAM running 
Windows NT. MMX technology provides 64-bit SIMD 
processing, which were used to pack eight 8-bit numbers and 
four 16-bit numbers. SSE2 technology uses 128-bit SIMD 
processing which provides for the possibility of packing 
sixteen 8-bit numbers or eight 16-bit numbers in a single 
SIMD word. The user interface, file handling and memory 
allocation code was written in C and compiled using the 
Visual C/C++ 6.0 compiler. The Smith-Waterman algorithm 
was written in assembly language and compiled using the 
Netwide ASeMbler 0.98.08 (NASM). 

In the tests, the local alignment score between two DNA 
sequences was calculated without recovering the alignment. 
The pam47 substitution matrix was used which assigns a value 
of +5 for a match and -4 for a mismatch between two 
nucleotides. A bias value of +4 was used to eliminate negative 
elements from the substitution matrix. An affine function 0 + 
7k was used for the gap open and gap extension penalties. 

The tests were performed using query sequences ranging in 
length from 100 – 1000 nucleotides varying in steps of 100. 
The annotated Drosophilia genome release 3.0 [15], 
containing 17,878 sequences with a total of 28,249,452 
nucleotides was used for performing the database search. 
Timings were measured by reading the microprocessor 

timestamp counter before and after completion of the target 
function. The timestamp counter is incremented at every clock 
cycle and is read using the assembly mnemonic RDTSC. The 
difference of the two counter values divided by the 
microprocessor clock speed in hertz, gives the time in seconds 
taken by the function to execute. For each test, the total 
program runtime, total I/O overhead, total time spent in the 
Smith-Waterman function, and their average times were noted. 
The speed in MCUPS for comparing a query sequence of 
length M and a database sequence of length N using the 
Smith-Waterman algorithm, is calculated as: (M * N) / tdp / 
106 where tdp is the time taken in seconds to execute the 
algorithm. 

Plots of search times versus query lengths for different 
SIMD implementations on the Pentium 4 machine are shown 
in figure 5.a. The bulk of the program time (96-97%) is spent 
in the Smith-Waterman sequence comparison function. Only a 
small percent of the time is spent as overhead for reading the 
sequences from disk. For a gap penalty of 0 + 7k, the diagonal 
method was found to be 1.30 to 1.87 times faster than the 
horizontal method. Using the 128-bit XMM registers on 
processors with SSE2 technology doubles the size of the 
SIMD word as compared to the 64-bit MMX registers of the 
older MMX technology. Theoretically, this should offer a two 
fold speed increase as compared to MMX. Practically, the 
speedups ranged from 1.17 to 1.40 as with an increase in the 
SIMD word length there is a corresponding increase in clock 
cycles. Surprisingly, the horizontal approach using byte 
precision on SSE2 technology was slower than its MMX 
implementation by 14%. 

As expected, searches using 8-bit subwords in the SIMD 
word as compared to searches using subwords of 16-bits were 
found to be faster by a factor of 1.31 to 1.79. Most comparison 
scores in sequence searches are well below the maximum 
value representable in 8 bits. Any score close to 255 
represents an interesting match which is investigated by other 
means, irrespective of its actual score. Hence in most cases, 
byte precision is sufficient for database searching. 

Another interesting observation made is the scalability of 
the SIMD implementation between processors in the same 
family. Figure 5.b shows the speedup of the MMX 
implementations of the two methods when run on a Pentium 4 
microprocessor as compared to a Pentium III microprocessor. 
The diagonal approach using MMX technology experiences a 
performance boost of 3.68 and 3.91 for the byte and word 
precisions respectively. The horizontal approach achieves 
more modest speedups of 1.44 and 1.63 for the byte and word 
precisions. SIMD processing is an integral part of the modern 
microprocessor, and will get faster with newer 
implementations. Because the two approaches are CPU bound, 
faster SIMD implementations in newer microprocessors will 
result in a corresponding performance increase for the 
application. 



 8 

a) 
 

 
b) 
 

 
c) 
 

 
 
Fig. 5.  Performance of parallel implementation. a. Search times versus query 
lengths for different implementations. b. Scalability of subword processing on 
Intel microprocessors. c. Effect of SWAT optimization. 

  
Figure 5.c shows the effect of gap penalties on the 

horizontal method. As mentioned before, a higher gap penalty 

increases the probability of the F value in a row remaining at 
zero, since the threshold Wi + We is increased. As more of the 
F matrix becomes zero, the horizontal method benefits since it 
has to do less computation and there is a drastic speed 
increase. Searching the database using a query of length 900 
with a gap penalty of 0 + 7k takes 174 seconds, while a search 
with a penalty of 40 + 2k  takes only 43.9 seconds (however, 
with the change in the gap penalty the optimal scores are no 
longer equal). The speed of the horizontal method varies from 
142 MCUPS with a gap penalty of 0 + 7k, to its saturation 
point at approximately 580 MCUPS with a gap penalty of 40 
+ 2k. The diagonal method on the other hand does not 
incorporate the SWAT optimization and experiences constant 
speeds for different gap penalties. Hence, database searching 
with a high gap penalty favors the horizontal method over the 
diagonal method. 

Finally, the various implementations of the Smith 
Waterman algorithm are compared in table 1. The linear 
version using integer registers offers a speed of only 9 
MCUPS which is impractical for searching large databases. 
Parallel SIMD implementations offer excellent speedups 
ranging from 10 to 62 times the sequential code depending 
upon the parallelization method, SIMD technology, precision 
and gap penalty. Searching a database containing mostly 
unrelated sequences favors using byte precision, as this 
provides the maximum speed. For sequences that generate 
comparison scores that saturate with byte precision, the 
slightly slower word precision implementation may be used. 
Finally, the diagonal implementation is favored over the 
horizontal implementation for low gap penalties as the 
horizontal implementation degenerates due to the low 
threshold. 

 

V. COARSE-GRAINED APPROACH 

The speedup experienced for database searching on general-
purpose microprocessors though significant, is insufficient for 
searching large databases. Whole genome comparison – the 
comparison of two sets of sequences from two organisms – is 
severely limited, as much higher speeds are required. A 
flexible, high speed and easily available solution at a 
reasonable cost is desired. 

An obvious answer is to harness the power of a network of 
workstations. Networks of workstations equipped with SIMD 
processing capabilities, are becoming increasingly available in 
universities, companies and research institutions. These 
workstations are typically left idle for a number of hours in a 
day, when they can be used more productively as a sort of 
virtual supercomputer. The coarse-grained approach is taken 
in speeding up the search process, where the target database is 
divided equally among the available workstations in the 
network. Here, each workstation calculates the optimal 
comparison scores between the query sequence set and its 
assigned portion of the database. Since the coarse-grained 
approach permits workstations to search the database 
independently, there is less interprocessor communication 
overhead and hence better scalability. 



 9 

In this work, we are interested in parallelizing the database 
search process using the dynamic programming technique 
efficiently on a LAN, containing dedicated workstations 
capable of SIMD processing. An architecture with the 
following characteristics is desired: good performance 
(speedup and scalability), evenly distributed load, robustness 
and tolerance to faulty workstations. 

A. The Distributed Smith-Waterman Database Comparison 
Architecture 
The distributed architecture (figure 6) supporting coarse-

grained database searching consists of a master, an ftp server 
and a number of workers, connected by an interconnecting 
network. The master is the point of control of the system. 
Before the start of computation, the master divides the 
database sequences into a number of buckets according to the 
number of workers expected. The subdivided buckets are then 
uploaded by the master onto the ftp server. The ftp server is 
the data repository and facilitates data exchange between the 
master and the workers. The master assigns a work packet to 
each worker, which includes details such as the location of the 
sequence database on the ftp server, the substitution matrix, 
gap penalties and the location on the ftp server where the 
comparison scores are to be uploaded once the search process 
is completed. 

1) The Master Process: The master process is started by 
passing the two genome (termed arbitrarily as the query and 
database sequence sets) to be compared, the substitution 
scores and gap penalty to be used, the url and path to the ftp 
server, and the number of workers expected for client side 
computation. The master divides the database into equal sized 
buckets using the bucket workload balancing technique, and 
uploads them to the specified path on the ftp server. The query 
sequence set is uploaded without splitting. 

The master process contains three types of threads: the 
control, reception and communication threads. The control 
thread is the main interface between the user and the 
distributed database search system. It responds to user 
commands, updates the display and keeps track of the amount 
of work left on the individual workers. The reception thread 
acts as the rendezvous point between the master and the 

workers. After connection establishment and initial 
handshake, a new worker is assigned a particular bucket to 
search. The communication thread is the channel for 
communication between the master and a worker. Status 
information is constantly streamed at regular intervals (set by 
the user) from the worker to the master. The master uses this 
information to update a running display of work completed, 
and the speed of the distributed system. Upon completion of 
the database search, the control thread downloads the 
comparison scores from the ftp server and collates the data 
into a single result file. The collation process is a time 
consuming task as the scores from the different workers have 
to be assembled in the original order of the database. 

2) The Data Exchange Server: The ftp server is used to 
handle the data exchange between the master and the workers. 
Once equal portions of the database have been created, they 
are stored along with the query sequences on the ftp server for 
retrieval by the workers. Similarly, the comparison scores 
generated on each worker is written to a file and uploaded to 
the ftp server. Since the master is always lightly loaded no 
matter how many workers are connected to it, and the ftp 
server is loaded only at the start and completion of the search 
process, both can be run on the same workstation. 

3) The Worker Process: The workers are processes, each 
running on an independent workstation. The worker process 
contains two threads: the control and computation threads. 
The control thread takes care of communication with the 
master. It gets the search parameters, downloads its bucket file 
and query sequence set to the local hard disk, constantly 
updates the master on the progress of the worker and uploads 
comparison scores once the database search is complete. The 
control thread also updates the master on the progress of 
computation at regular time intervals. The computation thread 
performs the Smith-Waterman sequence comparison 
procedure between the sequences in the downloaded bucket 
file and the query sequence set. Functions for sequence 
comparison that use SIMD processing are chosen from one of 
the various implementations presented in the previous section. 
Maximum time must be spent by the worker process in the 
computation thread rather than in the control thread to 
increase efficiency. 

B. Load Balancing 
The success of the coarse-grained approach is highly 

dependent on the load balancing strategy employed, which 
must be able to assign approximately equal portions of the 
database to each workstation. Further, a static allocation 
algorithm is desired because of the high communication 
overhead between workstations associated with dynamic 
allocation algorithms. A slightly modified version of the 
“bucket” method suggested by Yap, Frieder and Martino [16] 
which is a combination of the static allocation “portion” 
method and dynamic allocation “master-worker” methods. 
Yap defines the percentage of load imbalance (PLIB), to 
compare the effectiveness of a workload balancing technique 
as: 

 

TABLE 1 
SPEEDUP OF VARIOUS SMITH-WATERMAN IMPLEMENTATIONS 

Algorithm Technology Precision Penalty MCUPS 
Speedup

a 

Linear Integer DWord 0 + 7k 9 1 

Diagonal MMX Byte 0 + 7k 215 24 

Diagonal MMX Word 0 + 7k 125 14 

Diagonal SSE2 Byte 0 + 7k 266 30 

Diagonal SSE2 Word 0 + 7k 175 19 

Horizontal MMX Byte 0 + 7k 165 18 

Horizontal MMX Word 0 + 7k 92 10 

Horizontal SSE2 Byte 0 + 7k 142 16 

Horizontal SSE2 Word 0 + 7k 108 12 

Horizontal SSE2 Byte 10 + 2k 153 17 

Horizontal SSE2 Byte 40 + 2k 559 62 
aTests carried out on a Pentium 4, 1.4Ghz processor 
 



 10 

100
loadLargest 

loadSmallest  - loadLargest 
 PLIB ×=  

 
PLIB is the time difference between the fastest finishing 

and slowest finishing workstations. A good workload 
balancing technique must have a PLIB close to zero. PLIB 
signifies the degree of parallelism achieved. A lower PLIB 
achieves better parallelism and thus a better speedup. 

In the portion method, the database is partitioned into a 
number of portions proportional to the number of 
workstations. Division of the sequences in the database into 
equal portions presents a problem since the sequences are of 
varying lengths. Depending on the number of nucleotides in 
the database and the number of workstations present, an ideal 
portion size is calculated. Sequences from the database are 
added to a portion until the total length exceeds the ideal size 
by X percent, after which allocation moves to the next portion. 
This procedure is continued until all sequences are added to 
one of the portions. This method has low communication 
overhead since the allocation is done statically before the 
computation begins. However, it doesn’t achieve a PLIB close 
to zero. 

In the master-worker method, a master process is assigned 
the task of dynamically distributing sequences and collecting 
comparison scores from workstations. The master sends the 
next largest available sequence in the database to a 
workstation when a request is made. Sequences are distributed 
to free workstations until the comparison scores for the entire 
database are calculated. This method has a low PLIB but a 
very high communication overhead. The master may also 
become a source of system bottleneck if there are too many 
requests from a large number of workstations, resulting in idle 
workstation times, i.e. it has poor scalability. 

The bucket method is a static equivalent of the above 
dynamic allocation scheme, where the database is partitioned 
into buckets similar to the portion method. The database 
decomposition procedure differs as follows: 

The sequences in the database are sorted in descending 
length order. Starting from the longest sequence, each one is 
placed into a bucket that has the smallest value for the 
function: tb = (�nb) / SMCUPS where �nb is the current sum of 
sequence lengths in the bucket, and SMCUPS is the speed of the 
workstation to which the bucket is assigned. The function 
takes into account the heterogeneity of workstations in a 
network by adding the speed of sequence comparison into the 
function. This brings PLIB close to zero and the algorithm has 
a very low communication overhead. In case of a 
homogeneous network, the speed term can be omitted from 
the equation, simplifying it to the Yap algorithm that aims to 
minimize the difference in the total sequence lengths among 
the buckets. Because the work is divided before computation 
begins, the number of workstations and their speeds of 
comparison must be known in advance. Another potential 
problem is the degradation of this scheme due to faulty 
workstations. If even a single workstation process terminates 
during computation the time for database comparison doubles, 

because the corresponding bucket can only be allocated to 
another workstation once it completes its existing workload 
(i.e. PLIB becomes 50%). 

C. Implementation Details 
The Mithral client-server software development kit [17] 

was used to build the distributed system. The development kit 
provides platform independent network functions (TCP/IP 
connections), thread control and file system functions. The 
libcurl [18] library compiled as a DLL was used to provide file 
transfer support through the ftp protocol. The code was written 
in C and assembly, and compiled in Visual C/C++ 6.0 and the 
Netwide ASeMbler 0.98.08 (NASM) on Windows NT. The 
decision was taken to produce windows executables due to the 
largely Windows NT workstations used in the laboratory. 

The system was used for whole genome comparison, where 
one set of annotated sequences of an organism was compared 
against another. One of the genomes (termed the database set) 
is split into equal sized buckets, with sequences in each bucket 
being compared against the other genome (termed the query 
set). A metadata file is created for the database which contains 
the bucket number in which each sequence of that genome is 
placed. It is used to collate the scores generated by the 
workers into a single file, in the original order of the genome. 
 The SIMD Smith-Waterman implementation used is crucial 
in determining the speed and precision of the distributed 
system. For whole genome comparison good precision of the 
comparison scores is desired. The byte and word precision 
SSE2 implementations of the diagonal method are used. The 
sequence comparison score with the byte implementation is 
first calculated. If saturation occurs, the score is reevaluated 
with the word implementation. Hence, the range for the 
possible values of the comparison score is between 0 and 
(65,535 – BIAS). The number of high scoring (greater than 
255 – BIAS) pairs of sequences affects the speed of the 
distributed system since they will have to be reevaluated using 

8 

5 5 5 5 

7 7 7 7 

4 4 4 4 

3,6 3,6 3,6 

9 1 

2 

3,6 

F T P  S E R V E R  

 
W  

M A S T E R  

 
W  

 
W  

 
W  

1. PRE-PROCESSING, 2. BUCKET UPLOAD, 3. WORKER CONNECTION 
4. WORK ASSIGNMENT, 5. BUCKET DOWNLOAD, 6. STATUS UPDATES 
7. SCORE UPLOAD, 8. SCORE DOWNLOAD, 9. POST-PROCESSING 

 
Fig. 6.  The distributed Smith-Waterman architecture. 



 11 

the word precision implementation. Since this particular 
distributed system was run on a network of homogeneous 
workstations, the pure homogeneous metric was used for the 
load balancing algorithm. 

D. Results 
The experiments were carried out on 64 Windows NT 

workstations in the GA, MIS and ME computer labs of the 
T.S. Santhanam Computing Centre. A separate Windows 
workstation was used to run the master process and a 
workstation running Redhat Linux was used to run the ftp 
server. Each node is a single Pentium 4 microprocessor 
running at 1.4Ghz, with 128MB RAM. The interconnection 
network is switched 100Mbps ethernet. 

The first experiment carried out was the whole genome 
comparison of the annotated Bacillus Subtilis 168 genome 
(4100 DNA sequences; 3,650,998 nucleotides) with the 
Mycoplasma Genitalium G-37 genome (484 DNA sequences; 
528,750 nucleotides). A total of 1,370,339 (69%) pairwise 
comparisons produced scores below the byte saturation level, 
while 614,061 (31%) pairwise comparisons had to be 
reevaluated with the word implementation. The second 
experiment carried out was the whole genome comparison of 
the annotated Escherichia coli k-12 genome (4405 DNA 
sequences; 4,130,746 nucleotides) with the Haemophilus 
influenzae genome (1739 DNA sequences; 1,610,500 
nucleotides). A total of 1,529,612 (77%) pairwise comparisons 
produced scores below the byte saturation level, while 
454,788 (23%) pairwise comparisons had to be reevaluated 
with the word implementation. 

1) Evaluation of the “bucket” Load Balancing Technique: 
Tables 2 and 3 quantify the performance of the “bucket” load 
balancing technique for the two experiments in terms of PLIB. 
The tables display the size of the largest and the smallest 
buckets in nucleotides and the corresponding PLIB value.  

Excellent parallelism is achieved by the bucket technique 
with PLIB remaining very close to zero for all experiments. 
The difference between the largest and the smallest load, 
which is at the most around a hundred nucleotides, determines 
the extra time that will be taken to complete the task. The 
extra time in seconds that will be taken by the slowest 
workstation is calculated as: (Largest load – Smallest load) * 
Size of query genome / SMCUPS. Even for the worst performing 
case this is not in excess of a few seconds. PLIB is dependent 
on the genome that is split into buckets. In whole genome 
comparison, PLIB must be calculated for both sets of 
sequences, and the best performing set selected for creating 

the buckets. The performance of the load balancing technique 
in practice is also dependent on the composition of the 
sequences in the genome. The number of high scoring 
sequences in a bucket affects the number of reevaluations 
performed on a workstation with the word implementation of 
the comparison algorithm. It is difficult to determine in 
advance the sequences that will have a comparison score 
above the saturation level of the byte implementation, but in 
general longer sequences have a higher probability of 
generating larger scores. The bucket method takes this into 
consideration by first sorting the database sequences in 
descending order before allocation. 

2) Fault Tolerance: The ability to detect and overcome 
intermittent or permanent faults with the workers is crucial in 
the successful operation of the distributed system. The 
distributed system described is equipped with basic facilities 
to overcome these faults. Intermittent faults caused by 
network connectivity problems or heavy loading on a worker 
are detected upon its failure to report status information to the 
master. Permanent faults caused by the termination of a 
worker process on a workstation, results in the loss of the 
work done by that worker. The distributed system reassigns 
the bucket to a new worker when one becomes available. 
However, because the work is assigned statically by the 
bucket load balancing technique, the performance of the 
distributed system suffers drastically if even a single worker 
process terminates. 

3) Speedup: Figure 7 shows the absolute speedup of the 
distributed system on a number of workstations. The absolute 
speedup compares the runtime of the parallel program to the 
best sequential program, so that all overhead for 
parallelization is taken into consideration. Excellent speedup 
of linear nature is observed due to the independence of the 
workers and the excellent load balancing technique used. 

TABLE 2 
PERFORMANCE OF “BUCKET” LOAD BALANCING ALGORITHM: EXPERIMENT 1 

Workstations 
Largest Load 
(nucleotides) 

Smallest Load 
(nucleotides) PLIBa 

2 1825501 1825497 0.000219 

4 912759 912744 0.001643 

8 456402 456348 0.011832 

16 228231 228132 0.043377 

32 114120 114003 0.102524 
aGenome: Bacillus Subtilis 168, Sequences: 4100, Nucleotides: 3650998 
 

 

TABLE 3 
PERFORMANCE OF “BUCKET” LOAD BALANCING ALGORITHM: EXPERIMENT 2 

Workstations 
Largest Load 
(nucleotides) 

Smallest Load 
(nucleotides) PLIBa 

16 100691 100593 0.097327 

32 50388 50286 0.202429 

48 33630 33516 0.338983 

64 25233 25116 0.463679 
aGenome: Haemophilus Influenzae, Sequences: 1739, 
 Nucleotides: 1610500 
 

 



 12 

Tables 4 and 5 show the runtimes of the two experiments. 
Maximum MCUPS is the maximum instantaneous speed 
achieved during the distributed computation, while Average 
MCUPS is the average speed of the distributed system taking 
into account the time overhead spent for creating the buckets 
and collating the output generated by the workers. MCUPS / 
WORKSTATION measures the processor efficiency for the 
distributed system. Experiment 1 produces excellent results 
for tests performed on up to 32 workstations. Speeds obtained 
are linear, and excellent processor efficiency is observed. The 
actual speeds obtained however, are highly dependent on the 
composition of sequences in the genome. 

Experiment 2 compares genomes that are much larger in 
size and is a more time consuming task. It produces good 
speeds on up to 32 machines after which there is a significant 
drop in performance. There are many reasons for this 
performance drop. Firstly, a large number of workstations 
connecting simultaneously to the ftp server causes network 
congestion and overloads the ftp server. A simple workaround 
is to start groups of workers at different intervals of time. 
Secondly, there is a small overhead for splitting the genome 
into buckets at the beginning of computation. This is typically 
in the order of 60 seconds and increases with the number of 
workstations used. However, the significant reason for this 
performance drop is due to the time taken in collating the 
output produced by the different workers into a single result 
file. This is in the order of up to 300 seconds for 64 workers, 
and significantly decreases the performance of the distributed 
system if there is not a lot of work to be done. However, 
during collation of the output, the distributed system has 
completed the computation and the workers are no longer in 

use. 
The power of the distributed system is illustrated by the 

maximum speeds achieved on various workstations (figure 8). 
A maximum speed of 8076 MCUPS is achieved using 64 
workstations, a speedup of approximately 2.8 when compared 
to 16 workstations. Even higher speeds are possible for 
genomes of different compositions. Such speeds have until 
now been achievable only with costly, special purpose 
hardware. 

Table 6 compares the performance of the dynamic 
programming problem on various machines. The distributed 
system described in this paper, stands second only to the 
special purpose hardware solution, BioSCAN. The price of the 
distributed system is a misnomer since in most institutions a 
large number of workstations are already available and can be 
used with little to no additional cost. The advantage of this 
system is the high speeds achieved with widely available 
hardware. 

E. Limitations 
It is worthwhile documenting the limitations and problems 

encountered when using the workstation cluster for distributed 
processing. As mentioned before, the ftp server and the 
interconnecting network must be capable of servicing a large 
number of clients simultaneously. The ftp server is a source of 
bottleneck during the beginning and end of the computation. 
This problem can however be alleviated by starting the clients 
in different batches, so that the load on the ftp server is 
reduced. A potential problem is in the availability of a large 
number of machines. Since the workstations in a general 
laboratory are used by numerous people at varying times it 

TABLE 4 
EXPERIMENT 1: RUNTIME COMPARISON OF B. SUBTILIS VS M. GENITALIUM 

Workstations 
Runtime 
(seconds) 

Maximum 
MCUPS 

Average 
MCUPS 

MCUPS / 
Workstationa 

1 11337 170 170 170 

2 5569 350 347 173 

4 2842 708 679 170 

8 1444 1400 1337 167 

16 745 2730 2591 162 

32 396 5343 4875 152 
aGenome 1: Bacillus Subtilis 168, Sequences: 4100, Nucleotides: 3650998 
 Genome 2: Mycoplasma Genitalium G-37, Sequences: 484, 
 Nucleotides: 528750 
 

 
TABLE 5 

EXPERIMENT 2: RUNTIME COMPARISON OF E. COLI VS H. INFLUENZAE 

Workstations 
Runtime 
(seconds) 

Maximum 
MCUPS 

Average 
MCUPS 

MCUPS / 
Workstationa 

16 2472 2886 2691 168 

32 1311 5639 5074 159 

48 1358 7090 4899 102 

64 1233 8076 5395 84 
aGenome 1: Haemophilus influenzae, Sequences: 1739, 
 Nucleotides: 1610500 
 Genome 2: Escherichia coli k-12, Sequences: 4405, 
 Nucleotides: 4130746 
 

 

 
Fig. 7.  Speedup for the comparison of B. Subtilis versus M. Genitalium. 



 13 

may be impossible to reserve a large number of workstations 
for a specific interval of time. Strategic time intervals when 
there is less demand must be targeted. Another practical 
problem encountered was the failure of the power supply 
source. Because sequence comparison is a CPU intensive task, 
distributed computing on a workstation cluster increases the 
power consumption of the CPUs and can heavily load the 
power supply. 

VI. CONCLUSION 

The aim of this work was to test the feasibility of using 
parallel features of commonly available workstations for 
comparing whole genome sequences. A number of algorithms 
and implementations were designed using multimedia 
extensions for SIMD processing to achieve significant 
speedups on Pentium workstations. 

A distributed system using a cluster of Pentium 4 
workstations was built integrating the SIMD implementations. 
Excellent performance characteristics were observed with 
speeds comparable to the fastest implementations on special 
purpose hardware. General-purpose microprocessors are 
constantly being updated with the latest technology which can 
offer significant performance boosts.  The newly introduced 
Simultaneous Multi-threading (hyper-threading) technology 
available on Pentium 4 microprocessors offers further 
potential speed increases. 

 

ACKNOWLEDGMENT 

A. C. Jacob thanks the manager of Centre for Technical 
Support at T.S. Santhanam Computing Centre, Muthu G., and 
the laboratory personnel Mr. Ravikumar V. (GA), Mr. Elson 
Jeeva T. (MIS), Mr. Srinivasan V. and Ms Dharani (ME) for 
their gracious help in providing the extensive equipment 
required to conduct the various experiments in this work. 

REFERENCES 
[1] Richard Hughey, “Parallel hardware for sequence comparison and 

alignment,” Computer Applications in the Biosciences, 12(6):473—479, 
1996. 

[2] Bowen Alpern, Larry Carter, and Kang Su Gatlin, “Microparallellism 
and high-performance protein matching,” In Proceedings of 
Supercomputing '95, San Diego, California, December 3–8, 1995. ACM 
SIGARCH and IEEE Computer Society.  

[3] Andrzej Wozniak, “Using video-oriented instructions to speed up 
sequence comparison,” Computer Applications in the Biosciences, 
13(2):145—150, 1997. 

[4] Torbjorn Rognes and Erling Seeberg, “Six-fold speed-up of Smith-
Waterman sequence database searches using parallel processing on 
common microprocessors,” Bioinformatics, 16(8):669—706, 2000. 

[5] Volker Strumpen, “Parallel molecular sequence analysis on 
workstations in the internet,” Technical report, Department of computer 
science, University of Zurich, 1993. 

[6] Wellington S. Martins, Juan B. del Cuvillo, Francisco J. Useche, Kevin 
B. Theobald, and Guang R. Gao, “A multithreaded parallel 
implementation of a dynamic programming algorithm for sequence 
comparison,” In Proceedings of the Pacific Symposium on 
Biocomputing, 311—322, 2001. 

[7] Saul B. Needleman and Christian D. Wunsch, “A general method 
applicable to the search for similarities in the amino acid sequence of 
two sequences,” Journal of Molecular Biology, 48(3):443—453, 1970.  

[8] Pattern H. Sellers, “On the theory and computation of evolutionary 
distances,” SIAM Journal of Applied Mathematics, 26:787—793, 1974. 

[9] Temple F. Smith and Michael S. Waterman, “Identification of common 
molecular subsequences,” Journal of Molecular Biology, 147(1):195—
197, 1981.  

[10] Osamu Gotoh, “An improved algorithm for matching biological 
sequences,” Journal of Molecular Biology, 162(3):705—708, 1982.  

[11] Eugene W. Myers and Webb Miller, “Optimal alignments in linear 
space,” Computer Applications in the Biosciences, 4(1):11—17, 1988. 

[12] Aho, A.V., D.S. Hirschberg and J. D. Ullman, “Bounds on the 
complexity of the longest common subsequence problem,” Journals of 
the ACM, 23(1):1—12, 1976.  

[13] Ruby B. Lee, “Multimedia extensions for general-purpose processors,” 
Proceedings IEEE Workshop on Signal Processing Systems, 9—23, 
1997. 

[14] Alex Peleg, Sam Wilkie and Uri Weiser, “Intel MMX for multimedia 
PCs,” Communications of the ACM, 40(1):25—38, 1997.  

[15] Berkeley Drosophila Genome Project, private communication, 2003. 
Available: 
http://www.fruitfly.org/sequence/sequence_db/na_whole-
genome_CDS_dmel_RELEASE3.FASTA.gz 

[16] Tieng K. Yap, Ophir Frieder, Robert L. Martino, “Parallel computation 
in biological sequence analysis,” IEEE Transactions on Parallel and 
Distributed Systems, 9(3):283—293, 1998. 

[17] Mithral – cs-sdk, private communication, 2003. Available: 
http://www.mithral.com/projects/cosm/ 

[18] Libcurl, private communication, 2003. Available: http://curl.sf.net/ 

Fig. 8.  Speeds achieved in the comparison of E. Coli versus H. Influenzae. 

TABLE 6 
COMPARISON OF VARIOUS SEQUENCE COMPARISON ARCHITECTURES [1] 

System 
Type

a 
PEs MCUPS 

Cost 

(k$) 

BioSCAN SP 12992 25000 20 

64 Pentium 4sb WC 64 8076 68 

BISP SP 256 3200 20 

Kestrel PC 1024 1600 30 

DeCypher II-15 RH 1920 1400 173 

SAMBA SP 128 730 60 

Mercury - 2 SP 64 640 - 

Maspar MP - 2 GS 16684 500 1000 

Biocelerator - 1 RH 16 250 66 

FDF – 3 SP 3360 230 50 

Paragon GS 32 25 500 

5 Alpha 

AXP300s 
WC 5 17 50 

aGS - Supercomputer, PC - Programmable co-processors, 
 RH - Reconfigurable Hardware, SP - Special-purpose VLSI, 
 WC - Workstation Cluster, WS - Workstation. 
bOur distributed implementation 
 


